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Starting from the governing di!erential equations of motion in free vibration, the dynamic
sti!ness matrix of a uniform rotating Bernoulli}Euler beam is derived using the Frobenius
method of solution in power series. The derivation includes the presence of an axial force at
the outboard end of the beam in addition to the existence of the usual centrifugal force
arising from the rotational motion. This makes the general assembly of dynamic sti!ness
matrices of several elements possible so that a non-uniform (or tapered) rotating beam can
be analyzed for its free-vibration characteristics by idealizing it as an assemblage of many
uniform rotating beams. The application of the derived dynamic sti!ness matrix is
demonstrated by investigating the free-vibration characteristics of uniform and non-uniform
(tapered) rotating beams with particular reference to the Wittrick}Williams algorithm. The
results from the present theory are compared with published results. It is shown that the
proposed dynamic sti!ness method o!ers an accurate and e!ective method of free-vibration
analysis of rotating beams.
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1. INTRODUCTION

Using traditional methods that are based on the derivation of di!erential equations and
application of boundary conditions, the free-vibration characteristics of uniform rotating
Bernoulli}Euler beams have been studied by a number of investigators [1}4]. Some of these
investigators have emphasized the practical importance of such studies with illustrative
examples of engineering applications, for example, see Figure 3 reference [3]. Other
investigators have focused their attention solely on rotating cantilever beams [5}7] because
turbine, propeller and helicopter blades are sometimes idealized as cantilever beams. During
the historical development of this subject, a number of solution techniques with varying
degrees of applicability have been suggested in the literature. The Southwell principle [8], the
Rayleigh}Ritz method [9], the perturbation technique [10], the method of integral equations
[11] and Galerkin method [12] are some examples which need special mention. Most of these
investigations are con"ned to the free-vibration analysis of a single rotating structural (beam)
element although there are however, some notable exceptions where "nite element-based
procedures [13}16] which extend the generality of applications to cover non-uniform
distribution of structural properties have been discussed. Other contributors in this "eld
include Sta!ord and Giurgiutiu [17] and Giurgiutiu and Sta!ord [18], who have used
a semi-analytic approach by employing a transfer matrix formulation in terms of the beam
functions, which are essentially the series solutions of the governing di!erential equations.
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An alternative powerful and elegant method of free-vibration analysis is to use the
method of the dynamic sti!ness matrix [19]. Indeed the method has been used quite
extensively for non-rotating beams and there is a wealth of literature on the subject [20, 21].
It appears that no one has used the dynamic sti!ness method to investigate the
free-vibration characteristics of rotating beams. A survey by the author shows that there is
a gap in the literature in this respect. The central purpose of this paper is to "ll this gap and
extend the elegance of the dynamic sti!ness method to the simple case of a uniform rotating
Bernoulli}Euler beam as a novel preliminary step. This useful extension of the dynamic
sti!ness method even to the simple case of a Bernoulli}Euler beam is far from trivial. Indeed
as it will be seen later, considerable analytical and computational e!orts are required to
derive the dynamic sti!ness matrix of a rotating Bernoulli}Euler beam. Starting from the
basic governing di!erential equations in free vibration, the dynamics sti!ness matrix of
a uniform rotating Bernoulli}Euler beam is derived in this paper with the e!ects of hub
radius and a constant concentrated axial force at the outboard end of the beam taken into
account. The derived dynamic sti!ness matrix is applied with particular reference to
a well-known algorithm [22] to solve the free-vibration problem of a few but carefully
chosen uniform and non-uniform rotating beams for which some comparative results are
available [1, 3, 14]. The research reported in this paper is expected to pave the way for
further research on the dynamic sti!ness formulation of complex rotating systems.

In view of the smallness of the dynamic sti!ness literature in sharp contrast to the massive
"nite element literature available to date, the following comments are relevant.

Unlike the "nite element method in which the mass and sti!ness matrices of a structural
element are obtained separately, the dynamic sti!ness method involves only one
frequency-dependent matrix called the dynamic sti!ness matrix which contains both the
mass and sti!ness properties of the structural element. Another important but related
di!erence between the two methods is that the "nite element method uses an approximate
shape function of the structural element whereas the shape function used in the dynamic
sti!ness method is exact, and is generally obtained from the analytical solution of the
governing di!erential equation of motion of the structural element. Thus, the "nite element
method accounts for a "nite number of degrees of freedom of a structure (or a structural
element). By contrast, the dynamic sti!ness method accounts for an in"nite number of
degrees of freedom of a vibrating structure (or a structural element). Naturally, the accuracy
of results in the "nite element method is dependent upon the number of elements used and
hence the number of degrees of freedom chosen, and estimates of higher order natural
frequencies in free-vibration problems are considerably less accurate than the lower
order ones. On the other hand, the dynamic sti!ness method has no such limitations
and the results are independent of the number of elements used in the analysis. For instance,
a single element can be used to calculate any number of &&exact'' natural frequencies
and modes of a structure to any desirable accuracy. The assembly procedure for
adding element matrices to obtain the overall master matrix of the "nal structure is
essentially the same for both methods. However, the solution techniques can be quite
di!erent in the sense that the "nite element method generally leads to a linear eigenvalue
problem whereas the dynamic sti!ness method often leads to a (non-linear) transcendental
eigenvalue problem.

2. THEORY

Figure 1 shows the axis system of a typical Bernoulli}Euler beam element of length
¸ with its left-hand end at a distance r

i
from the axis of rotation. Note that r

i
may or may



Figure 1. Co-ordinate system and notation for a rotating Bernoulli}Euler beam.
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not be equal to the hub radius r
h
, and also ¸ may or may not be equal to the total length ¸

T
shown in the "gure. The beam is assumed to be rotating at a constant angular velocity
X and has a doubly symmetric cross-section such as a rectangle or a circle so that the
bending and torsional motions as well as the in-plane and out-of-plane motions are
uncoupled. In the right-handed Cartesian co-ordinate system chosen, the origin is taken to
be at the left-hand end of the beam as shown*the >-axis coinciding with the neutral axis
of the beam in the unde#ected position. The Z-axis is taken to be parallel (but not
coincidental) with the axis of rotation while the X-axis lies in the plane of rotation. The
principal axes of the beam cross-section are, therefore, parallel to X and Z directions. The
system is able to #ex in the Z direction (#apping) and in the X direction (lead-lag motion).
These two motions can be coupled only through Coriolis forces, but for the system shown
for the present analysis, this coupling is ignored.

The dynamic sti!ness development which follows concerns the out-of-plane free
vibration of the beam so that the displacements are con"ned only in the>Z-plane as shown
in Figure 2(a). (It will be explained later that the dynamic sti!ness matrix for the in-plane
motion of the beam can be derived from the out-of-plane case by suitable substitutions of
parameters relating to the rotational speed and the bending rigidity of the beam in the
corresponding plane.) The beam element is assumed to be undergoing free natural vibration
with circular (angular) frequency u in the >Z-plane, but has an outboard force F which
may arise as a result of the centrifugal force experienced by an adjacent element. The
inclusion of this force F allows a general applicability of the method so that the derived
dynamic sti!ness matrix can be assembled to study the free-vibration characteristics of
a beam with a complex geometry and non-uniform distribution of structural properties. Of
course, the outboard force F needs to be calculated for each elemental segment representing
the beam by using the expression for centrifugal force, see equation (1) below, and noting
that this force is zero at the free (tip) end of the beam.

In order to derive the equilibrium equations the forces acting on an incremental length dy
at an instant of time t are shown in Figure 2(b). The senses shown for these forces constitute
a positive sign de"nition in this paper for axial force (¹), bending moment (M) and shear
force (< ) respectively.



Figure 2. (a) Out-of-plane vibration of a rotating beam element of length ¸. (b) The forces acting on an
incremental element dy during out-of-plane vibration.
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The governing di!erential equations of motion of the beam element can now be derived
using Newton's second law by considering the equilibrium of the in"nitesimal length dy of
the beam element shown in Figure 2(b).

Referring to Figure 2(a), the centrifugal tension ¹ (y) at a distance y from the origin with
the inclusion of an outboard force F is given by [3]

¹(y)"0)5mX2(¸2#2¸r
i
!2r

i
y!y2)#F, (1)

where m is the mass per unit length of the beam and X is the rotational speed in radian per
second.

Consideration of equilibrium of an in"nitesimal element shown in Figure 2(b) in the
> and Z directions gives

d¹

dy
#mX2 (r

i
#y)"0 (2)
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and

d<

dy
#mu2z(y)"0. (3)

Finally, rotational equilibrium of the element about the X-axis gives

<#
dM

dy
!¹ (y)

dz

dy
"0. (4)

The Bernoulli}Euler bending moment equation is given by

M (y)"EI
xx

d2z

dy2
, (5)

where E is the Young's modulus of the beam material and I
xx

is the second moment of area
of the cross-section about the X-axis so that EI

xx
is the #exural rigidity of the beam in the

>Z plane.
Equations (1)}(5) can be combined into one di!erential equation and can be expressed in

non-dimensional form as follows:

D4hM (m)!M0)5l2 (1#2o
0
!2o

0
m!m2)#gND2hM (m)#l2 (o

0
#m)DhM (m)!k2hM (m)"0,

(6)

where

D"d/dm, m"y/¸, hM (m)"z/¸, o
0
"r

i
/¸, k2"mu2¸4/EI

xx
,

l2"mX2¸4/EI
xx

, g"F¸2/EI
xx

. (7)

Thus, the dimensionless expressions for tension, bending moment and shear force are
de"ned as

b (m)"¹(y)¸2/EI
xx
"0)5l2(1#2o

0
!2o

0
m!m2)#g,

MM (m)"M(y)¸/EI
xx

, <M (m)"<(y)¸2/EI
xx

. (8)

Equation (6) is a linear ordinary di!erential equation with variable coe$cients
and is, therefore, amenable to power series solution in terms of the independent
variable m. Using the Frobenius method, the solution is sought in the form of the following
series [1, 3]:

f (m, k)"
=
+
n/0

a
n`1

(k)mk`n, (9)

where a
n`1

are the coe$cients and k is an undetermined exponent.
Substituting equation (9) into equation (6), one obtains the following indicial equation

[1, 3]:

k (k!1)(k!2)(k!3)"0 (10)
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and the following recurrence relationship [1, 3]:

a
n`5

(k)"
M0)5l2(1#2o

0
)#gN

(k#n#4)(k#n#3)
a
n`3

(k)!
l2o

0
(k#n#1)

(k#n#4)(k#n#3)(k#n#2)
a
n`2

(k)

(11)

!

0)5l2(k#n)(k#n#1)!k2

(k#n#4)(k#n#3)(k#n#2)(k#n#1)
a
n`1

(k),

where the "rst four coe$cients are de"ned as

a
1
(k)"1, a

2
(k)"0, a

3
(k)"

M0)5l2(1#2o
0
)#gN

(k#2)(k#1)
, a

4
(k)"!

l2o
0
k

(k#3)(k#2)(k#1)
.

(12)

The roots of the indicial equation (10) are k"0, 1, 2 and 3 so that the four linearly
independent solution functions f (m, 0), f (m, 1), f (m, 2) and f (m, 3) are given by

f (m, 0)"1#M0)5l2(1#2o
0
)#gNm2/2#

=
+
n/0

a
n`5

(0)mn`4, (13)

f (m, 1)"m#M0)5l2(1#2o
0
)#gNm3/6!l2o

0
m4/24#

=
+
n/0

a
n`5

(1)mn`5, (14)

f (m, 2)"m2#M0)5l2(1#2o
0
)#gNm4/12!l2o

0
m5/30#

=
+
n/0

a
n`5

(2)mn`6, (15)

and

f (m, 3)"m3#M0)5l2(1#2o
0
)#gNm5/20!l2o

0
m6/40#

=
+
n/0

a
n`5

(3)mn`7. (16)

Hence, the general solution of the di!erential equation (6) may be written as

hM (m)"C
1

f (m, 0)#C
2

f (m, 1)#C
3

f (m, 2)#C
4

f (m, 3), (17)

where C
1
, C

2
, C

3
and C

4
are four arbitrary constants.

Using the sign convention of Figure 2(b) to be all positive, the expressions for the
anti-clockwise (tangential) rotation or beam slope (h1 ), bending moment (MM ) and shear force
(<M ) are, respectively, given in non-dimensional forms as follows (see equation (8)):

h1 (m)"hM @ (m)"C
1

f @ (m, 0)#C
2

f @ (m, 1)#C
3

f @ (m, 2)#C
4

f @ (m, 3), (18)

MM (m)"hM A(m)"C
1

f A(m, 0)#C
2

f A (m, 1)#C
3

f A (m, 2)#C
4

f A(m, 3) (19)

and

<M (m)"!hM @@@(m)#b(m)hM @ (m)

"!MC
1

f @@@(m, 0)#C
2

f @@@(m, 1)#C
3

f @@@(m, 2)#C
4

f @@@(m, 3)N

#b (m)MC
1

f @ (m, 0)#C
2

f @(m, 1)#C
3

f @ (m, 2)#C
4

f @(m, 3)N, (20)

where a prime denotes di!erentiation with respect to m.



Figure 3. End conditions for displacements and forces of the beam element.
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The dynamic sti!ness matrix which relates the amplitudes of harmonically varying forces
to the corresponding harmonically varying displacement amplitudes at the ends of the
element, can now be derived by imposing the end conditions for displacements and forces.

The end conditions for displacements and forces of the element (see Figure 3) are,
respectively,

Displacements:

at end 1 (m"0): hM "HM
1
, h1"H1

1
, (21)

at end 2 (m"1): hM "HM
2
, h1"H1

2
. (22)

Forces:

at end 1 (m"0): <M "!<M
1
, MM "!MM

1
, (23)

at end 2 (m"1): <M "<M
2
, MM "MM

2
. (24)

Substituting equations (21) and (22) into equations (17) and (18) and noting that

f (0, 0)"1, f (0, 1)"0, f (0, 2)"0, f (0, 3)"0 (25)

and

f @(0, 0)"0, f @(0, 1)"1, f @ (0, 2)"0, f @ (0, 3)"0, (26)

the following matrix relationship is obtained:

HM
1

HM
1

HM
2

HM
2

"

1 0 0 0

0 1 0 0

b
31

b
32

b
33

b
34

b
41

b
42

b
43

b
44

C
1

C
2

C
3

C
4

(27)

which may be written conveniently in the form

U1 "BC, (28)

where

b
31
"f (1, 0), b

32
"f (1, 1), b

33
"f (1, 2), b

34
"f (1, 3) (29)
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and

b
41
"f @ (1, 0), b

42
"f @ (1, 1), b

43
"f @ (1, 2), b

44
"f @(1, 3). (30)

Substituting equations (23) and (24) into equations (19) and (20) and noting that

f @@@(0, 0)"0, f @@@ (0, 1)"0)5l2(1#2o
0
)#g,

f @@@(0, 2)"0, f @@@ (0, 3)"6, b (0)"0)5l2(1#2o
0
)#g (31)

and

f A (0, 1)"0, f A (0, 2)"2, f A (0, 3)"0, b (1)"g, (32)

the following matrix relationship is obtained:

<M
1

MM
1
<M

2
MM

2

"

0 0 0 6

d
21

0 !2 0

d
31

d
32

d
33

d
34

d
41

d
42

d
43

d
44

C
1

C
2

C
3

C
4

(33)

or

F1 "DC, (34)

where

d
21
"!M0)5l2 (1#2o

0
)#gN, d

31
"g f @(1, 0)!f @@@(1, 0), d

32
"g f @ (1, 1)!f @@@(1, 1),

(35)

d
33
"g f @ (1, 2)!f @@@(1, 2), d

34
"g f @ (1, 3)!f @@@(1, 3) (36)

and

d
41
"f A (1, 0), d

42
"f A(1, 1), d

43
"f A (1, 2), d

44
"f A (1, 3). (37)

The dynamic sti!ness matrix K1 can be obtained by eliminating the constant vector C from
equations (28) and (34) to give the force}displacement relationship as follows:

F1 "K1 U1 (38)

or

<M
1

MM
1
<M

2
MM

2

"

kM
11

kM
12

kM
13

kM
14

kM
22

kM
23

kM
24

symmetric kM
33

kM
34

kM
44

HM
1

HM
1

HM
2

HM
2

(39)

where

K1 "DB~1 (40)

is the required (non-dimensional) dynamic sti!ness matrix.
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Each individual element of the K1 matrix is generated using purely algebraic method by
inverting the B matrix algebraically and pre-multiplying the resulting matrix by the
D matrix. The 10 independent terms of the K1 matrix are as follows:

kM
11
"6(b

31
b
43
!b

33
b
41

)/D, kM
12
"6(b

32
b
43
!b

33
b
42

)/D, kM
13
"!6b

43
/D, kM

14
"6b

33
/D,

(41)

kM
22
"2(b

32
b
44
!b

34
b
44

)/D, kM
23
"!2b

44
/D, kM

24
"2b

34
/D, (42)

kM
33
"(b

44
d
33
!b

43
d
34

)/D, kM
34
"(b

33
d
34
!b

34
d
33

)/D, kM
44
"(b

33
d
44
!b

34
d
43

)/D,

(43)

where

D"(b
33

b
44
!b

34
b
43

). (44)

The dynamic sti!ness matrix derived above has been worked out using all parameters in
non-dimensional form. The displacement, bending moment and shear force were all taken
as dimensionless quantities through the use of equations (7) and (8). (Note that the slope
which is the "rst derivative of the ordinate with respect to the abscissa remains invariant
(unchanged) when X and > co-ordinates are transformed into m and hM by dividing with ¸.)
The elements of the dimensional dynamic sti!ness matrix K can now be recovered from the
elements of K1 so that

<
1

M
1
<

2
M

2

"

k
11

k
12

k
13

k
14

k
22

k
23

k
24

symmetric k
33

k
34

k
44

H
1

H
1

H
2

H
2

. (45)

Using the relationships of equations (7) and (8) it can be shown easily that

k
11
"=

3
kM
11

, k
12
"=

2
kM
12

, k
13
"=

3
kM
13

, k
14

"=
2
kM
14

, (46)

k
22
"=

1
kM
22

, k
23
"=

2
kM
12

, k
24
"=

1
kM
24

, (47)

k
33
"=

3
kM
33

, k
34
"=

2
kM
34

, (48)

and

k
44
"=

1
kM
44

, (49)

where

=
1
"EI

xx
/¸, =

2
"EI

xx
/¸2, =

3
"EI

xx
/¸3 (50)

and kM
11

, kM
12

, kM
13

, etc., are given by equations (41)}(44).
The governing di!erential equation of motion for the dynamic sti!ness matrix

formulation of the beam referring to the in-plane motion (see X> plane in Figure 1) turns
out to be similar to that of the out-of-plane motion of equation (6) except that the coe$cient
k2 appearing in the last term must be replaced by (k2#l2) (see reference [3], p. 623
for details). Thus, the above sti!ness expressions are valid for in-plane motion of the
beam provided k2 in equation (7) is rede"ned as (k2#l2). With this new de"nition of k2, all
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expressions given above will equally apply for in-plane free vibration of the beam, but, of
course, the appropriate bending rigidity (EI

zz
) for the displacement in X> plane must be

used.

3. APPLICATION OF THE DYNAMIC STIFFNESS MATRIX

The above dynamic sti!ness matrix can now be used to compute the natural frequencies
and mode shapes of a rotating beam with various end conditions. A rotating non-uniform
beam, for example a tapered beam, can also be analyzed for its free-vibration characteristics
by idealizing it as an assemblage of many uniform beams, and is thus treated as a stepped
beam. An accurate and reliable method of calculating the natural frequencies and mode
shapes using the dynamic sti!ness matrix method is to apply the well-known algorithm of
Wittrick and Williams [22], which has featured literally in dozens of papers. The algorithm,
unlike its proof, is very simple to use [20}21], but for a detailed insight interested readers
are referred to the original work of Wittrick and Williams [22]. Basically, the algorithm
needs the dynamic sti!ness matrices of individual members in a structure and information
about their natural frequencies when both ends are clamped. This information is needed to
enable the algorithm to guarantee that no natural frequencies of the structure are missed.
Thus, an explicit expression from which the clamped}clamped natural frequencies can be
found facilitates an easy and straightforward application of the algorithm. D in equation
(44) is such an expression because the clamped}clamped natural frequencies are given by
its zeros. It should be noted that the actual requirement of the algorithm is to isolate
these clamped}clamped natural frequencies (that is to determine how many such natural
frequencies are there below a speci"ed trial frequency) rather than actually calculating them.
The Wittrick}Williams algorithm [19}22] essentially gives the number of natural
frequencies of a structure that exists below an arbitrarily chosen trial frequency rather than
actually calculating the natural frequencies. This simple feature of the algorithm can be
exploited to advantage to enable calculation of any natural frequency of the structure to any
desirable accuracy.

The above dynamic sti!ness matrix can be used to solve certain speci"c problems (for
example, the free-vibration analysis of the rotating slider mechanism shown in Figure 3 of
reference [3]). However, it should be recognized that the theory has been greatly
compromised because it assumes zero pre-twist of the beam axis and also zero coupling
between in-plane and out-of-plane bending as well as bending and torsional motions. The
theory is thus restrictive and needs further development for many practical applications
such as helicopter and turbine blades for which pretwist and other coupling terms can have
pronounced e!ects. The present paper is expected to stimulate this area of research.

4. RESULTS AND DISCUSSION

4.1. UNIFORM BEAMS

The "rst three dimensionless natural frequencies k (see equation (7)) of a uniform rotating
Bernoulli}Euler beam for clamped}free (C}F), clamped}clamped (C}C) clamped}pinned
(C}P) and pinned}pinned (P}P) end conditions obtained from the above dynamic sti!ness
theory are shown in Table 1 for representative values of the non-dimensional rotation speed
parameter l and hub-o!set parameter r

h
/¸

T
. Note that the "rst letter of the abbreviations

C}F, C}C, C}P and P}P corresponds to the end condition of the left-hand end of the beam
whereas the second one corresponds to that of the right-hand end. These results agree



TABLE 1

<ariation of the ,rst three dimensionless natural frequency parameter (k) with the variations of
the dimensionless angular speed (l) and hub o+-set ratio (r

h
/¸

T
)

Natural l"1 l"5
End frequency

conditions (k) r
h
/¸

T
"0 r

h
/¸

T
"1 r

h
/¸

T
"2 r

h
/¸

T
"3

C}F k
1

3)6816 3)8888 10)862 12)483
k
2

22)181 22)375 32)764 35)827
k
3

61)842 62)043 73)984 77)935

C}C k
1

22)465 22)601 29)866 32)101
k
2

61)802 61)987 72)922 76)572
k
3

121)04 121)25 133)81 138)23

C}P k
1

15)513 15)650 22)663 24)729
k
2

50)093 50)277 60)906 64)382
k
3

104)39 104)59 116)99 121)30

P}P k
1

10)022 10)264 19)684 22)078
k
2

39)642 39)889 53)132 57)235
k
3

88)991 89)241 103)92 108)93
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completely with the exact results of reference [3] which uses a di!erential equation and its
solution approach rather than the dynamic sti!ness method. Representative results for the
"rst three mode shapes corresponding to the above four sets of boundary conditions of the
beam for values of l"1 and r

h
/¸

T
"1 are shown in Figure 4. During the computation of

results it has been found that the convergence of the power series method is excellent.
Typically with up to 80 terms in the power series, the results obtained are accurate to six
digits. When the number of terms is increased to 120 the accuracy increases to nine digits.

4.2. TAPERED BEAMS

Although any type of tapered beam can be idealized by a suitable number of uniform
dynamic sti!ness elements, for illustrative purposes two di!erent types of linearly tapered
cantilever beams have been chosen from the published literature [1, 14]. This has made
a direct comparison of results obtained from the present theory with those available in the
literature possible.

4.2.1. Example 1

In this example, the taper is such that the variations of the mass per unit length m(m), and
the bending rigidity EI (m) at a (non-dimensional) distance m are governed by the following
expressions:

m(m)"m
0
(1!cm) (51)

and

EI (m)"E
0
I
0
(1!cm)3. (52)

where m
0
and E

0
I
0
correspond to values of the mass per unit length and the #exural rigidity

at the thick end (that is the built-in end) of the beam, respectively, and c is the taper ratio
such that 0(c(1. Note that equations (51) and (52) cover a wide range of cross-sections



Figure 4. Mode shapes of a rotating uniform Bernoulli}Euler beam for clamped}free (C}F), clamped}clamped
(C}C), clamped}pinned (C}P) and pinned}pinned (P}P) end conditions.

Figure 5. The idealization of a linearly tapered beam using 10 uniform elements.
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for tapered beams [23] (for example, a solid rectangular cross-section with constant width
and linearly varying depth).

A sketch showing a 10-element idealization of the tapered beam is given in Figure 5. The
results are obtained for the case when the taper ratio is "xed at c"0)5. The data used for



TABLE 2

Data used for the 10-element idealization of the tapered beam of Example 1 with r
h
/¸

T
"0

Element no.
(i) ¸

i
/¸

T
r
i
/¸ m

i
/m

0
(EI)

i
/E

0
I
0

F
i
¸2
T
/E

0
I
0

1 0)1 0)0 0)975 0)92686 0)32888
2 0)1 0)1 0)925 0)79145 0)31500
3 0)1 0)2 0)875 0)66992 0)29313
4 0)1 0)3 0)825 0)56152 0)26425
5 0)1 0)4 0)775 0)46548 0)22938
6 0)1 0)5 0)725 0)38108 0)18950
7 0)1 0)6 0)675 0)30755 0)14563
8 0)1 0)7 0)625 0)24414 0)09875
9 0)1 0)8 0)575 0)19011 0)04988

10 0)1 0)9 0)525 0)14470 0)00000

TABLE 3

<ariation of the ,rst three non-dimensional frequency parameter (k) of the tapered beam of
Example 1 with the variation of the non-dimensional angular speed parameter (l) for r

h
/¸

T
"0

Present theory
Angular speed Natural frequency Reference [14]

(l) (k) 10 element 20 element (exact)

0 k
1

3.8078 3)8198 3)8238
k
2

18)227 18)295 18)317
k
3

47)022 47)203 47)265

1 k
1

3)9711 3)9827 3)9866
k
2

18)384 18)451 18)474
k
3

47)175 47)356 47)417

2 k
1

4)4222 4)4331 4)4368
k
2

18)848 18)914 18)937
k
3

47)631 47)810 47)872

3 k
1

5)0790 5)0892 5)0927
k
2

19)598 19)662 19)684
k
3

48)381 48)558 48)619

4 k
1

5)8657 5)8755 5)8788
k
2

20)601 20)664 20)685
k
3

49)411 49)586 49)646
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the 10 individual elements of Figure 5 are given in Table 2 for those readers who wish to
check their own results or their computer codes based on the expressions given in this
paper. Note that the dynamic sti!ness method will give exact results for the stepped beam
shown in Figure 5, but the results for the (actual) tapered beam will not be exact because the
dynamic sti!ness matrix used is not for a tapered beam. The "rst three non-dimensional
natural frequencies (k) for a range of non-dimensional rotational speed parameters (l)
obtained using the dynamic sti!ness theory when the hub o!set ratio r

h
/¸

T
is equal to zero,

are given in Table 3 for 10- and 20-element idealization respectively. The authors of
reference [14] have reported exact results for this particular example although their main
investigation is based on approximate theory using the "nite element method. These results
are also shown in Table 3 for comparison. The agreement with exact results particularly



Figure 6. Mode shapes of the rotating tapered cantilever beam of Example 1.

TABLE 4

<ariation of the ,rst three non-dimensional frequency parameter (k) of the tapered beam of
Example 1 with the variation of the non-dimensional angular speed parameter (l) for r

h
/¸

T
"1

Present theory
Angular speed Natural frequency

(l) (k) 10 elements 20 elements 40 elements

1 k
1

4)3719 4)3830 4)3858
k
2

18)791 18)857 18)874
k
3

47)590 47)769 47)815

2 k
1

5)7291 5)7392 5)7417
k
2

20)388 20)452 20)468
k
3

49)250 49)426 49)472

3 k
1

7)4394 7)4494 7)4519
k
2

22)799 22)859 22)874
k
3

51)891 52)062 52)106

4 k
1

9)2964 9)3068 9)3094
k
2

25)789 25)847 25)861
k
3

55)359 55)525 55)567
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with 20-element idealization is quite good as can be seen. The "rst three modes for this
cantilever beam obtained from the present theory when using 20 elements are shown in
Figure 6 for the case when the rotational speed parameter l was set to 2.

The next set of results for this example is obtained when the hub o!set ratio r
h
/¸

T
is

non-zero and "xed at 2. The "rst three non-dimensional natural frequencies for a wide
range of angular speed, obtained from 10-, 20- and 40-element idealization are shown in
Table 4. The rapid convergence of results with increasing number of elements is evident
from these results.

4.2.2. Example 2

The second example used to obtain numerical results is that of Wright et al. [1]. For this
particular problem the taper is such that both the mass per unit length m(m), and the
bending rigidity EI (m) vary linearly along the length of the beam so that

m(m)"m
0
(1!c

1
m) (53)



TABLE 5

<ariation of the ,rst three non-dimensional frequency parameter (k) of the tapered beam of
Example 2 with the variation of the non-dimensional angular speed parameter (l) and the

hub-o+set ratio parameter (r
h
/¸

T
)

Hub o!set Angular Natural Present theory
ratio speed frequency Exact

(r
h
/¸

T
) (l) (k) 20 elements 50 elements (Reference [1])

0 0 k
1

5)2656 5)2725 5)2738
k
2

23)949 23)995 24)004
k
3

59)800 59)943 59)970

5 k
1

7)6382 7)6434 7)6443
k
2

26)407 26)450 26)458
k
3

62)240 62)380 62)407

1 1 k
1

5)5427 5)5493 5)5507
k
2

24)195 24)241 24)250
k
3

60)043 60)186 60)214

5 k
1

10)076 10)082 10)083
k
2

29)484 29)525 29)535
k
3

65)599 65)737 67)765

5 1 k
1

6)1418 6)1482 6)1494
k
2

24)759 24)804 24)813
k
3

60)615 60)758 60)785

5 k
1

16)504 16)510 16)512
k
2

39)362 39)404 39)413
k
3

77)439 77)575 77)602
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and

EI (m)"E
0
I
0
(1!c

2
m), (54)

where m
0
and E

0
I
0
correspond to values of the mass per unit length and the #exural rigidity

at the thick end of the beam, respectively, and c
1

and c
2

are the proportionality constants.
Proceeding in the same way as in Example 1, the results are obtained for cantilever end

condition of the tapered beam using a stepped beam representation. Representative results
for the "rst three non-dimensional natural frequencies for a range of hub-o!set ratios and
angular speeds, when using 20- and 50-element idealization are shown in Table 5 alongside
the exact result obtained from reference [1]. The constants c

1
and c

2
of equations (53) and

(54) were set to 0)8 and 0)95, respectively, so that a direct comparison of results with those of
reference [1] is possible. The agreement with the exact result, particularly when using the
present theory with 50 elements is excellent (the discrepancy is less than 0)05%) as can be
seen.

4.3. FURTHER INSIGHTS INTO THE RESULTS OF TAPERED BEAMS

The results for the tapered beams of Examples 1 and 2 shown in Tables 3}5 indicate that
a stepped representation of a linearly tapered beam using uniform dynamic sti!ness
elements, gives a lower bound on natural frequencies. This is to be expected because when
a tapered element is represented by a series of uniform elements, the sti!ness properties are
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underestimated [23] by such idealization whereas the mass of the element remains
invariant. As a consequence a reduction in natural frequencies is expected to occur.

The results of Tables 3}5 indicate that with a discrete element idealization, the accuracy
of natural frequencies improves when the hub-o!set ratio or angular speed increases. The
reason for this can be attributed to the fact that for higher hub-o!set ratios or angular
speeds, the centrifugal force terms dominate the (mechanical) bending sti!ness terms, and
noting that the centrifugal terms are better represented by stepped approximation than the
bending sti!ness terms. This accords with similar "ndings of a recently published paper
[24].

The convergence of results with number of elements (used to approximate the taper) was
studied for both examples. Figure 7 shows the variation of percentage error with number of
elements (N) for the fundamental natural frequency of the two beams, respectively, for two
representative sets of values of hub-o!set ratios and angular speeds. The accuracy increases
with the number of elements as expected and the results show that only as few as 10
(uniform) elements can give acceptable (engineering) accuracy in the fundamental natural
frequency when idealizing the tapered beam, the errors being less than 0)5%. Further
studies of convergence and accuracy of results were carried out to assess the computational
e$ciency of the proposed method.

The investigation revealed that in order to obtain "ve-"gure accuracy in natural
frequencies, around 200 uniform elements will be required to idealize a tapered beam of the
type under consideration. As the computer time increases with the number of elements, and
hence with the accuracy, estimates of the CPU time on a Sun (Ultra-2) workstation was
taken when locating the "rst three natural frequencies of the two example beams. In each
run, a data-speci"able convergence criterion CV was satis"ed where the computational
accuracy of the results was 1 part in CV. For example, if CV is set to 106 the accuracy
obtained will be 1 part in a million. The plot of the elapsed CPU time against the
convergence criteria CV when locating the "rst and third natural frequencies of the "rst
example beam is shown in Figure 8. Similar trends were observed for the second example
but are not shown here for brevity. The rapid growth of the CPU time with accuracy,
particularly for higher natural frequencies is noticeable.

The results shown in Figures 7 and 8 prompted a further study to investigate whether or
not it is possible to extrapolate accurate results for the natural frequencies of tapered beams
from the approximate results obtained using relatively smaller number of uniform elements.

The results shown in Figure 7 indicate that the natural frequencies converge almost
parabolically with the number of elements (N). This trend was further con"rmed by
a number of case studies. These numerical studies suggest that the exact result can be related
to the approximate result and the number of elements by "tting a curve which is that of
a parabola. Thus if f

E
is the exact natural frequency of a tapered beam and f

N
is the

approximate natural frequency obtained by using N number of uniform elements, the
following relationship is taken to be valid:

f
N
"f

E
(1!K/N2). (55)

where K is a constant.
If the approximate natural frequency is obtained by using, respectively, N

1
and N

2
number of elements (N

2
'N

1
), it can be shown with the help of equation (55), that the exact

natural frequencies can be established as the parabolic limit of the two discrete element
idealization results, as follows:

f
E
"f

N2
#

(N
1
)2

(N
2
)2!(N

1
)2

( f
N2
!f

N1
), (56)



Figure 7. Variation of percentage error with number of elements for the fundamental natural frequency of
tapered beams.

Figure 8. Variation of CPU time with convergence criteria CV (accuracy is 1 part in CV) for the "rst and third
natural frequency of the tapered beam of Example 1.
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where f
N1

and f
N2

are the natural frequencies corresponding to N
1

and N
2

element
idealization of the tapered beam.

With the help of equation (56) the parabolic limits of the "rst three natural frequencies of
the two example (tapered) beams were established using, respectively, 10 and 20 elements
(see Table 3) for Example 1, and 20 and 50 elements for Example 2 (see Table 5). These
results are shown in Table 6 for the case when the hub-o!set ratio is set to zero. For



TABLE 6

Extrapolation of natural frequencies of tapered beams using the parabolic limit when r
h
/¸

T
"0

Example 1 Example 2
Natural

Anglar speed frequency Parabolic limit using Parabolic limit using
(l) (k) 10 and 20 elements 20 and 50 elements

0 k
1

3)8238 5)2738
k
2

18)318 24)004
k
3

47)263 59)970

1 k
1

3)9866 5)3903
k
2

18)473 24)107
k
3

47)416 60)069

2 k
1

4)4367 5)7249
k
2

18)936 24)413
k
3

47)870 60)367

3 k
1

5)0926 6)2402
k
2

19)683 24)915
k
3

48)617 60)859

4 k
1

5)8788 6)8928
k
2

20)685 25)601
k
3

49)644 61)541
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Example 1, the results obtained using the parabolic limit are well within 0)005% of the exact
results whereas for Example 2, the results agreed to full "ve "gures of the exact results
quoted in the literature. The procedure shows that very substantial saving in computer time
can be made and at the same time su$cient accuracy can be retained when predicting the
free-vibration characteristics of rotating tapered beams using uniform dynamic sti!ness
elements.

5. CONCLUSIONS

A dynamic sti!ness matrix has been developed for the "rst time for a rotating
Bernoulli}Euler beam using the Frobenius method of solution of the governing di!erential
equation in power series. The application of the dynamic sti!ness matrix with particular
reference to the Wittrick}Williams algorithm is demonstrated by numerical results. The
theory developed gives exact natural frequencies (up to machine accuracy) for rotating
uniform beams, but is fairly general to account for the free-vibration characteristics of
rotating non-uniform beams in a su$ciently accurate manner. Using the proposed theory,
di!erent sets of results for uniform and tapered beams are given which show very good
agreement with published results. It has been shown that when idealizing a tapered beam by
using a number of uniform dynamic sti!ness element, the parabolic limit of the approximate
results gives an accurate estimate of the exact result. The research reported in this paper is
expected to stimulate further research on dynamic sti!ness formulation of complex rotating
structural systems.
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